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APPROXIMATE ANALYSIS OF THE PJiRFOMNCE 

OF CHAR-FORMING ABLATORS 

By Robert T. Swann 

SUMMARY 

Equations governing t h e  performance of charring ablators ,  subject t o  a 
diffusion-controlled oxidation mechanism of char removal, a r e  derived. A solu- 
t i o n  i s  presented f o r  t h e  case of a constant-enthalpy leve l .  The e f f e c t s  of 
various mater ia l  propert ies  and environmental parameters a r e  discussed. 

INTRODUCTION 

The charring p l a s t i c s  provide a p r a c t i c a l  method f o r  protect ing the  in te -  
r i o r  of a reentry vehicle  from t h e  aerodynamic heating encountered during 
reentry.  Much e f f o r t  has been directed toward understanding t h e  performance of 
these materials.  Analytical  models f o r  charring ab la tors  a r e  presented i n  re f -  
erences 1 and 2. These references a l s o  present estimates of t h e  weight of the  
charring ab la tor  which i s  required t o  provide adequate thermal protect ion as a 
function of heating conditions and mater ia l  propert ies .  A more rigorous ana- 
l y t i c a l  model of t h e  charring ab la tor  i s  presented i n  reference 3.  Results of 
some t y p i c a l  calculat ions a r e  given i n  references 3 t o  5 .  

A primary problem encountered i n  analyses of t h e  performance of charring 
ab la tors  i s  t h e  removal of char from t h e  surface.  Aerodynamic shear, thermal 
s t r e s s ,  d i f f e r e n t i a l  pressure, and oxidation have been suggested as mechanisms 
contributing t o  char removal. The removal of char as a r e s u l t  of pressure 
within the  char, caused by confinement of t h e  gaseous products of pyrolysis, i s  
analyzed i n  reference 6. The e f f e c t s  of aerodynamic shear and thermal s t r e s s  
a r e  not known i n  quant i ta t ive  terms. Results of an extensive experimental 
invest igat ion of t h e  e f f e c t s  of oxidation on char removal and surface heating 
are presented i n  reference 7. I n  t h e  t e s t  environment employed i n  t h e  inves- 
t i g a t i o n  ( r e f .  7), oxidation appeared t o  be t h e  only mechanism involved i n  char 
removal. I n  t h e  l i g h t  of t h e  r e s u l t s  presented i n  reference 7, it appears t h a t  
oxidation e f f e c t s  should be incorporated i n  t h e  analysis  of charring ab la tors .  

The d i f f e r e n t i a l  equation governing t h e  performance of a charring ab la tor  
subject t o  a diffusion controlled mechanism of oxidation has been derived 
herein and i s  solved f o r  a p a r t i c u l a r  case. The e f f e c t s  of mater ia l  propert ies  
and environmental f a c t o r s  on performance a r e  discussed. 



SYMBOLS 

0.6 a = CehNLe 

concentration of oxygen 

concentration of oxygen external  t o  boundary l aye r  

v o l a t i l e  f r ac t ion  i n  uncharred mater ia l  

heat of combustion pe r  un i t  weight of char consumed 

e f f ec t ive  heat of pyrolysis 

heat of pyrolysis  

t o t a l  enthalpy 

thermal conductivity 

r a t e  of m a s s  t r a n s f e r  

rate of char removal 

mass of gaseous products of pyrolysis 

r a t e  of formation of gaseous products of pyrolysis  

L e w i s  number, Npr/NsC 

Prandt.1 number 

Schmidt number 

heating of surface resu l t ing  from donibustion 

hot-wall convective heating ra te  

hot iwal l  convective heating rate with no mass t r ans fe r  

radiant  heating rate 

heat input 



t o t a l  convective heat input QC 

t o t a l  radiant  heat  input  Q r  

t t i m e  

T absolute temperature 

TS average surface temperature during reentry 
- 

U boundary-layer ve loc i ty  p a r a l l e l  t o  surface 

v boundary-layer ve loc i ty  normal t o  surface 

W 

we char weight 

X boundary-layer coordinate paral.le1 t o  surface 

Y boundary-layer coorili.nate normal t o  surf ace 

thermal-protection weight per  u n i t  area (weight of material  degraded) 

6C char thickness 

E emissivity 

la t r ansp i r a t ion  f a c t o r  

A weight of char removed per u m i t  weight of oxygen diffusing t o  surface 

P viscosity 

P char d e n s i t y  

P ’  densi ty  of boundary-layer f l u i d  

0 Stefan-Boltxmann constant 

Subscripts : 

e external  t o  boundary 

i i n i t i a l  value 

m ex t r emum value 

max m a x i m u m  value 
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0 

P 

r 

ref 

S 

W 

value i n  absence of m a s s  t r a n s f e r  

pyrolysis  

radiant  

reference value 

surface 

a t  t h e  w a l l  

ANALYSIS 

An ana ly t i ca l  model of t h e  charring ab la tor  i s  presented i n  reference 1. 
This model i s  shown schematically i n  figure 1. The outer  surface i s  subjected 

t o  aerodynamic heating. The char pro- 
vides an in su la t ing  layer,  and t h e  heat  
passing through t h i s  l aye r  i s  absorbed 
by pyrolysis  a t  t he  in t e r f ace  between t h e  
char l aye r  and t h e  uncharred mater ia l .  
The surface of t h e  char re-radiates  a 

q 

Frvnt Ct.ar Layer 

t t 3 3 t I  Fyrolysis s ign i f icant  f r a c t i o n  of t h e  heat input .  I i n t e r f ace  The gases generated by pyrolysis  t ran-  
sp i r e  through t h e  char l aye r  and are 
in jec ted  i n t o  t h e  boundary l aye r .  
gases a re  heated as they pass through 
t h e  char layer,  and t h i s  removal of heat 
from the  char l aye r  reduces the  quant i ty  
of heat  conducted t o  t h e  pyrolysis  i n t e r -  
face.  When these  gases a re  in jec ted  i n t o  

U n C h a I T &  
material 

The u 
Figure 1.- Schematic diagram of charring 

ablator .  

t h e  boundary layer,  t h e  convective heat t r a n s f e r  t o  t h e  surface i s  reduced. 
This reduction i n  convective heat as a r e s u l t  of m a s s  i n j ec t ion  i s  t h e  same 
e f f e c t  as t h a t  obtained with simple subliming ab la tors .  I n  addi t ion t o  t h e  
gases produced by pyrolysis,  a residue remains at the  in t e r f ace  and adds t o  t h e  
thickness of t h e  char layer .  This process tends t o  increase t h e  thickness of 
t h e  char layer .  A t  t h e  sane t i m e ,  char removal may occur as a r e s u l t  of  thermal, 
chemical, o r  mechanical processes, and tends t o  decrease t h e  thickness  of t h e  
char layer .  

The thermal behavior of charring ab la tors  i s  very complex and, i n  general, 
numerical methods a re  required t o  solve t h e  governing equations. However, i f  
some simplifying assumptions a re  made, approximate expressions can be obtained 
f o r  t h e  char accumulation and t h e  pyrolysis  r a t e .  Such approximate r e s u l t s  a r e  
compared with t h e  numerical r e s u l t s  of reference 1, and t h e  agreement i s  satis- 
fac tory .  The e f f e c t s  of oxidation on char removal and heat input can be 
included i n  analyses s i m i l a r  t o  t h a t  of reference 1 without any p a r t i c u l a r  d i f -  
f i c u l t y .  
removes char and t h e  rate a t  which oxidation adds heat  t o  t h e  surface.  

However, equations must be obtained f o r  t h e  r a t e  at which oxidation 
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Oxidat ion  

It i s  shown i n  reference 8 t h a t  t h e  rate of oxidation of porous carbon i n  
air  i s  a d i f fus ion  control led process, even at  r e l a t i v e l y  low temperatures. 
Therefore, t h e  rate of oxidation i s  control led by t h e  rate at  which oxygen d i f -  
fuses from t h e  ex terna l  stream t o  t h e  surface.  A de ta i l ed  study of t h e  removal 
of char by oxidation i s  presented i n  reference 7. 
t h a t  char removal occurs primarily as a r e s u l t  of oxidation. With s u f f i c i e n t l y  
high surface temperatures (and hence high react ion r a t e s ) ,  t h e  oxygen d i f fus ing  
t o  t h e  surface {reacts  with t h e  char r a the r  than with t h e  products of pyrolysis .  
The m a x i m u m  rate at which oxygen d i f fuses  t o  t h e  surface i s  

I n  t h a t  study it i s  concluded 

(02) 

The der ivat ion of equation (1) i s  

If A i s  t h e  weight of char 
t h e  r a t e  of char removal i s  

out l ined i n  t h e  appendix. 

removed pe r  c n i t  weight of avai lable  oxygen, 

If Ah i s  t h e  quant i ty  of heat  added t o  t h e  surface 
consumed, t h e  r a t e  a t  which t h e  surface i s  heated by 

aAh 9, 
‘1 = He - Hw 

The evaluation of A and Ah i s  a complicated 

per  u n i t  weight of char 
combustion i s  

( 3 )  

aero-thermal-chemical 
problem, t h e  so lu t ion  of which i s  beyond t h e  scope of t h e  present paper. 
ever, l imi t ing  values can be indicated.  The m a x i m u m  value of A i s  0.73, 
which corresponds t o  t h e  r a t i o  of t h e  molecular weights of carbon and oxygen 
when t h e  product of oxidation i s  carbon monoxide. 
of Ah i s  approximately 4,000 Btu/lb. Carbon monoxide i s  t h e  most probable 
product of a react ion occurring i n  an oxygen-deficient environment, and t h e  
formation of it i s  consis tent  with t h e  results of reference 7. 

How- 

For t h i s  reaction, t h e  value 

The model of a charring ab la tor  described previously i s  adequate f o r  numer- 
With c e r t a i n  s implif icat ions,  t h e  model can be reduced t o  a form 

Solutions based on t h i s  assump- 

i c a l  analysis .  
f o r  which ana ly t i ca l  solut ions can be obtained. 
spec i f ic  heat  of t h e  char l aye r  i s  negl igible .  
t i o n  a r e  compared with numerical solut ions i n  reference 1 and t h e  approximate 
so lu t ion  provides an adequate representat ion of phenomena within t h e  char, 
including char formation. 
i t y  of t h e  char l aye r  i s  a funct ion of temperature as follows: 

F i r s t ,  it i s  assumed t h a t  t h e  

A second assumption i s  t h a t  t h e  e f f ec t ive  conductiv-: 

5 
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Because t h e  spec i f i c  heat  of t h e  char l aye r  i s  negligible,  t h e  heat t r ans fe r r ed  
across t h e  char l aye r  (from t h e  surface t o  t h e  reac t ion  zone) i s  equal t o  
k T  I.-Tp). It i s  expected t h a t  t h e  thermal conductivity of a porous material 

O C  
such as a char l aye r  will increase with increasing temperature because of t h e  
g rea t e r  importance of rad ia t ion  across t h e  void spaces. 
re-radiates  energy a t  a rate proportional t o  i t s  four th  power; therefore ,  re la -  
t i v e l y  l a rge  changes i n  t h e  heat input are required t o  obtain s ign i f i can t  
changes i n  t h e  surface temperature. 
ence temperature 
mized. The ac tua l  e r r o r  cannot be estimated because no data  a re  present ly  
avai lable .  

The surface 

Therefore, by properly se lec t ing  t h e  re fer -  
Tref, t h e  e r r o r  introduced by using equation ( 4 )  can be mini- 

The model of a charring ab la to r  presented i n  reference 1 can be readi ly  
extended t o  t h e  case i n  which char removal and surface heating occur as a r e s u l t  
of oxidation. The unknown quan t i t i e s  a r e  t h e  surface temperature, t h e  rates of 
pyrolysis  and char removal, t h e  convective and combustive heating rates, and 
t h e  weight of char accumulated. 
degraded can be derived. 

From these  quant i t ies ,  t h e  weight of mater ia l  

The approach which w i l l  be used i s  as follows. Energy balances a t  t h e  
heated surfaee and at  t h e  pyrolysis  i n t e r f ace  a r e  used t o  eliminate t h e  surface 
temperature. An approximate boundary-layer so lu t ion  i s  used t o  express t h e  con- 
vect ive heating rate i n  terms of t h e  convective heating r a t e  with no mass t rans-  
f e r  and t h e  mass-transfer r a t e s .  The char-removal r a t e  and t h e  combustive- 
heating r a t e  a r e  r e l a t ed  t o  t h e  convective-heating r a t e  by equations (2 )  and ( 3 ) .  
An equation f o r  t h e  weight of char accumulated i s  obtained by noting the  com- 
bined e f f ec t s  of char formation and char removal. A d i f f e r e n t i a l  equation 
r e l a t i n g  t h e  weight of char accumulated and the  convective heat input with no 
m a s s  t r a n s f e r  i s  then derived. This equation, together  with t h e  r e l a t ion  
between char weight and mount of mater ia l  pyrolyzed, i s  used t o  r e l a t e  t h e  
weight of mater ia l  degraded and t h e  convective-heat input with no m a s s  t r a n s f e r .  

A heat  balance at  t h e  outer  surface y i e lds  t h e  following equation: 

( 5 )  Convective Combustion Radiant Re-radiation Heat conducted 
heating heating heating from surface 

The heat  conducted from t h e  surface i s  absorbed by pyrolysis  and by heating 
t h e  gaseous products of pyrolysis  t o  t h e  surface temperature. 
pyrolysis  i s  

The r a t e  of 
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where 

i s  an e f f ec t ive  heat  of pyrolysis  which includes t h e  he t absorbed by t h e  gases 
as they t r ansp i r e  through t h e  char. 
Equations (4), ( 5 ) ,  and (6 )  can be combined t o  eliminate T 

Equation (7) i s  derived i n  reference 2. 

where 

and it i s  assumed tha t  

Tp4 << Ts 4 

The convective-heating r a t e  can be obtained from t h e  r e l a t ion  

where 
Equation (9) i s  obtained by f i t t ing  a s t r a i g h t  l i n e  t o  t h e  boundary-layer solu- 
t i o n s  given i n  reference 9. It i s  va l id  only when t h e  term 

qc,o i s  t h e  hot-wall convective-heating r a t e  with no m a s s  t r ans fe r .  

This condition i s  almost always s a t i s f i e d  when a l l  t h e  heat  input i s  convective. 
A higher order approximation may be required i f  high radiant-heat inputs  are 
a l so  incident  on t h e  surface.  It i s  assumed i n  equation (9) t h a t  t h e  char which 
i s  oxidized and t h e  pyrolysis  products which are in j ec t ed  i n t o  the  boundary 
l aye r  a r e  equally e f f ec t ive  i n  blocking t h e  convective heat input; t h i s  assump- 
t i o n  explains t h e  mul-tiplication of and 5 by t h e  same value of q. 
Actually, t h e  blocking effect iveness  depends on t h e  molecular weight of t h e  
in jec ted  gases and probably d i f f e r s  f o r  t h e  products of combustion and pyrol- 
y s i s .  
neglected. 

However, t o  t h e  present order of approximation t h i s  difference may be 

7 



From equations (2)  and ( g ) ,  t h e  rate of oxidation of t h e  char i s  

mc = 

and s imi la r ly  t h e  hea t  t r a n s f e r  t o  t h e  surface ( i n  terms of t h e  heat  t r a n s f e r  
with no m a s s  t r a n s f e r  and t h e  r a t e  of pyro lys i s )  i s  

From equations ( 3 )  and (ll), t h e  rate at  which t h e  surface i s  heated as a 
result of combustion i s  

To t h i s  point, a su f f i c i en t  number of r e l a t ions  has been developed t o  
express a l l  t h e  unknown var iab les  i n  terms of t h e  rate of pyrolysis,  t h e  weight 
of char accumulated, and t h e  heating rate with no m a s s  t r ans fe r .  From consider- 
a t ion  of t he  geometric e f f e c t s  of pyrolysis  and char removal, t h e  weight of char 
accumulated i s  r e l a t ed  t o  t h e  r a t e s  of pyrolysis  and char removal as follows: 

which s t a t e s  t h a t  t h e  r a t e  of change of char weight i s  equal t o  t h e  difference 
between t h e  r a t e  a t  which char i s  formed and t h e  r a t e  a t  which char i s  removed. 
Equation (10) can be used t o  eliminate I& from equation (13). Thus, 

(14) 
aqc, 0 

d t  (1 + aq)(He - ~ w )  

Equations ( 8 ) ,  (ll), (12), and (14) can be combined t o  y i e ld  t h e  fo l -  
lowing equation: 

qc, 0 

H e  - Hw 

P 

The quant i t ies  qc. 

Qr 

o, qr, and He - Hw are, i n  general, known functions 
of t i m e .  

8 
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laboratory evaluation of charring ablators ,  
qc,o, qr, and H e  - Hw are constants. Equation (15) i s  a nonlinear first- 
order ordinary d i f f e r e n t i a l  equation which can be solved by numerical methods. 
When t h e  weight of char has been determined, equation (14) can be in tegra ted  t o  
determine t h e  m a s s  of t h e  gaseous products formed by pyrolysis .  The weight of 
material  degraded t o  y i e ld  gaseous products and char i s  

W, i s  a function of time whereas 

char weight with respect  t o  
time vanishes, t h e  char weight 
i s  an extremum. It w i l l  be seen 
l a t e r  t h a t  t h e  char weight i s  a 
monotonic function of heat input 
i f  other  conditions a r e  constant. 
Therefore, t h e  extremum may be i 

From equation (l5), t h e  extremum char weight i s  found t o  be 
1 

It should be noted tha t ,  i n  general_, i s  a funct ion of t i m e .  

The extremum char weight i s  an important combination of mater ia l  p roper t ies  
and environmental parameters, e n t i r e l y  as ide  from i t s  in t e rp re t a t ion  as a l i m -  
i t i n g  value. The extremum char weight depends on t h e  heating on ly  through t h e  
r a t i o  of r ad ia t ive  t o  convective heating rates 
value of t h i s  r a t i o  increases .  The v o l a t i l e  f r a c t i o n  and t h e  stream enthalpy 

qr/qc,o, and it increases  as t h e  

9 
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st rongly influenced t h e  ex t r emum char weight, as shown i n  f igu res  2 and 3 .  The 
e f f e c t s  of oxygen concentration and radiant heating are discussed later.  

30 

10 

'c+, 

l b / q  ft 
3. 

1. 

.2 .4 
f 

Figure 2.- Effect of v o l a t i l e  f r a c t i o n  on extremum 
char weight. A = 0.75; Ce = 0.20; p = 0.10. 

When t h e  char weight approaches 
t h e  ext remum char weight, dWc/dt 
approaches zero, from t h e  def in i -  
t i o n  of extremum char weight. When 

d t  
from equation (14), 

- dWC = 0, t h e  r a t e  of pyrolysis  is, 

(18) 
a fqc, 0 mp = 

1 - f  + a v H e - H w  

For t h i s  condition, t h e  r a t e  of 
pyrolysis  i s  independent of k, p, 
E, and aherr. The only material 
property a f fec t ing  the  pyrolysis  
r a t e  i s  the  v o l a t i l e  f r a c t i o n  f .  
This r e s u l t  can be understood when 

it i s  noted tha t ,  with - - 
t h e  r a t e  a t  which char i s  formed 
(which i s  d i r e c t l y  proportional t o  
t h e  r a t e  of pyrolysis)  i s  equal t o  
t h e  r a t e  of char removal. 
t h e  r a t e  at which char i s  removed 
depends only on t h e  r a t e  a t  which 
oxygen d i f fuses  t o  t h e  surface.  It 
should be noted t h a t  t h e  time 

- 0, 
dWC 
d t  

However, 

required t o  approach t h e  extremum char thickness increases  as t h e  extremum char 
thickness increases .  The extremum char thickness i s  a function of t h e  mater ia l  
p roper t ies  as well  as of t h e  environmental conditions; therefore,  t h e  extent t o  
which a given t e s t  w i l l  be influenced by t h e  char weight approaching i t s  extremum 
value i s  r e l a t ed  t o  t h e  proper t ies  of t h e  mater ia l .  

Caution must be exercised i n  t h e  in t e rp re t a t ion  of t e s t  r e s u l t s  when t h e  
char-formation cha rac t e r i s t i c s  i n  t h e  t e s t  environment do not simulate those 
t h a t  e x i s t  i n  t h e  f l i g h t  environment. When t h e  char thickness approaches i t s  
extremum value ( f o r  example, i n  low enthalpy t e s t s ) ,  t h e  response of t h e  mater ia l  
i s  governed by r e l a t ions  which a r e  qui te  d i f f e ren t  from those t h a t  apply i n  
general .  The only mater ia l  cha rac t e r i s t i c  which a f f e c t s  mater ia l  performance 
under such conditions i s  t h e  v o l a t i l e  f rac t ion .  

Solution f o r  Constant Enthalpy 

The most important s lng le  heating condition i s  t h a t  f o r  which t h e  stream 
enthalpy i s  constant and f o r  t h i s  condition equation (15) can be in tegra ted  i n  

10 



closed form, provided qr/qcYo and C e  a r e  constant.  All of these  conditions 
are ty-pical of tests conducted i n  ground t e s t  f a c i l i t i e s .  

Equation (15) can be s implif ied 
t o  t h e  following form by using equa- 
t i o n  (17): 

a 

If t h e  stream enthalpy i s  constant and 
any radiant  heating i s  proport ional  t o  
t h e  convective heating, equation (19) 
i s  a l i n e a r  f i r s t - o r d e r  d i f f e r e n t i a l  
equation i n  Qc with W, as t h e  inde- 
pendent var iable .  The so lu t ion  of t h i s  
equation i s  

- 'c,i - 'c 

wc, In (.+ *)loge &,In 

I---- 
%, In 
Wc, i 

1-- 

10 

8 

6 
We,") 
lb - 

sq ft 

4 

2 

0 4 

0.t 

/ / 

/ 

*eff 

Figure 3.- Effect of enthalpy on extremum 
char weight. qr = 0 .  

The amount of pyrolysis  t h a t  has occurred can be determined as a funct ion of t h e  
heat  input and t h e  char thickness by in tegra t ing  equation (14)  

The w e i g h t  of mater ia l  which has been thermally degraded ( t h a t  is, pyro- 
lyzed t o  y i e l d  gaseous products o r  char) is, from equations (16) and (21), 

1 + aq 



Because of t h e  t ranscendental  character  of equation (20),  t h e  required weight 
of k e r i a l  cannot be expressed e x p l i c i t l y  as a funct ion of t h e  heat  input .  
However, equation (20) can be used t o  determine We as a funct ion of Qc. 
These r e s u l t s  can be subs t i t u t ed  i n t o  equation (22) t o  ca lcu la te  t h e  required 
weight. 

Solution f o r  No Char Removal 

For t h e  case i n  which no char removal occurs ( a  = 0), equation (15) has 
t h e  following form: 

This form of the  equation would apply t o  a material having cha rac t e r i s t i c s  
s i m i l a r  t o  a charring ab la tor  except t h a t  t h e  surface does not oxidize and i s  
not removed by mechanical forces .  
an example of t h i s  type of performance. This equation would a l so  apply t o  
reentry i n t o  a planetary atmosphere containing no oxygen or other  chemical 
species  which reac t  with t h e  char. 

An impregnated ceramic sh ie ld  might provide 

The so lu t ion  of  equation (23) i s  

L 

and t h e  t o t a l  weight of degraded material i s  

WC w = W C , i  + - 
1 - f  

If an average value of t h e  enthalpy during reent ry  i s  assumed, t h i s  r e s u l t  i s  
i d e n t i c a l  t o  t h a t  presented i n  reference 1. 

DISCUSSION 

Certain cha rac t e r i s t i c  fea tures  of char formation and removal have been 
noted previously. I n  general, however, t h e  equations governing t h e  performance 
of charring ab la tors  a r e  too complex t o  y i e l d  s ign i f i can t  information from a 
cursory examination. 
parameters on system performance can bes t  be evaluated on t h e  bas i s  of a para- 
metric study. 

The e f f e c t s  of mater ia l  p roper t ies  and environmental 

A l l  t h e  results presented i n  f igu res  4 t o  9 are based on heating 
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i n  an airstream. Therefore, with a given heat input but  with d i f f e ren t  enthal- 
pies, t h e  difference between t h e  two r e s u l t s  ind ica tes  t h e  extent t o  which a 
t e s t  at one condition fa i l s  t o  simulate performance a t  t h e  other  condition; t h a t  
is, it indica tes  t h e  difference which r e s u l t s  from f a i l u r e  t o  consider t h e  varia- 
t i ons  i n  t h e  two t e s t  conditions. 

The r e l a t i o n  between W / p  and ' i s  independent of t h e  value 
B h e f f  

of p .  However, t h e  required weight i t sel f  i s  not independent of P. For 
example, i f  p and Q both increase by a f a c t o r  of 2, t h e  required weight a l so  
increases  by a f a c t o r  of 2. L i t t l e  information i s  avai lable  concerning the  
appropriate value of p .  Based on a comparison of calculated results and a 
l imi ted  number of t es t  r e su l t s ,  t h e  value of p f o r  a 50-50 mixture of phenolic 
and nylon w a s  found t o  be about 0.10. 

Thermal-Protection Weight 

The conditions f o r  which equation (19) has been in tegra ted  a r e  not repre- 
sen ta t ive  of an ac tua l  spacecraf t  reentry.  During such a reentry,  t h e  enthalpy 
decreases from i t s  i n i t i a l  value t o  a negl ig ib le  value; however, a s ign i f i can t  
f r ac t ion  of t h e  t o t a l  heat input  may be experienced before t h e  decrease i n  
enthalpy i s  appreciable.  I n  t e s t s  conducted i n  ground f a c i l i t i e s ,  a constant- 
enthalpy l e v e l  i s  normally maintained and t h e  present solut ion should be val id .  
Therefore, weights calculated from equations (20) and (22) a r e  usefu l  i n  eval- 
uat ing t h e  e f f e c t s  of environmental parameters and mater ia l  p roper t ies  on 
thermal-protection requirements and also i n  determining t h e  s ignif icance of 
ground t e s t  r e s u l t s  as they apply t o  a f l i g h t  environment. 

The thermal-protection weight (eq. (22 ) )  i s  p lo t t ed  as a funct ion of t h e  
t o t a l  heat input i n  f igu re  4. 
ance f o r  insu la t ion  o r  f o r  f ac to r s  of safety, it will be re fer red  t o  as t h e  
thermal-protection weight. The required w e i g h t  i s  higher a t  t h e  low enthalpy 
l e v e l  than a t  t h e  high enthalpy l e v e l  f o r  all values of t o t a l  heat input .  This 
condition r e s u l t s  from t h e  g rea t e r  e f f ec t  of oxidation and t h e  l e s s e r  e f f e c t  of 
blocking a t  t h e  lower enthalpy. 

Although t h i s  weight does not include any allow- 

Over t h e  most important range of heat  input, t h e  optimum value of f i s  
between 0.4 and 0.6, t h e  lower value of f being associated with the  higher 
heat  input .  However, f o r  values of f between 0.4 and 0.6, t h e  required weight 
i s  not extremely sens i t i ve  t o  t h e  p a r t i c u l a r  value t h a t  i s  used. 

The e f f e c t  of t o t a l  heat  input on required weight i s  shown i n  f igu re  5 f o r  
a value f = 0.4. With t h i s  l i n e a r  t o t a l  heat  input scale,  t h e  decrease i n  the  
slope of t h e  weight curve with increasing t o t a l  heat  input  i s  readi ly  observed. 
With no radiant  heat input, t h e  required weight i s  more s t rongly influenced by 
t h e  enthalpy l eve l .  If one-half of t h e  t o t a l  heat  input i s  radiant  
(qr/qc,o = 1)' t h e  required weight a t  a constant-enthalpy l e v e l  i s  less than 
t h a t  f o r  s i m i l a r  t o t a l  heating i n  t h e  absence of radiat ion.  T h i s  e f f e c t  i s  much 
more pronounced at t h e  low-enthalpy l eve l .  Available t es t  r e su l t s ,  which are 
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Figure 4.- Effect of heat input on required weight of ablat ing mater ia l .  

reported on t h e  bas i s  of  temperature r ise r a the r  than on t h e  weight of material  
degraded, ind ica te  t h a t  t he  e f f e c t  of radiant  heating on mater ia l  performance 

i s  similar t o  an equal amount of con- 
vect ive heating. 

The e f f e c t  of t h e  enthalpy l e v e l  on 
required weight i s  shown e x p l i c i t l y  i n  
f igu re  6 f o r  se lec ted  values of t o t a l  
heat input .  A t  t h e  lower enthalpies,  
t h e  required weight i s  very sens i t i ve  t o  
t h e  enthalpy value whereas at higher 
enthalpies  t h e  required weight i s  re la -  
t i v e l y  in sens i t i ve  t o  t h e  enthalpy. 

a 

Figure 5.- Effect  of t o t a l  heating on required 
weight of ablat ing material .  f = 0.4. 

Thermal-Protection Effectiveness 
1 

It i s  d i f f i c u l t  t o  define a simple 
parameter of considerable genera l i ty  
which provides a measure of t h e  effec- 
t iveness  of char-forming mater ia ls  i n  
t h e  sense t h a t  t h e  heat of ab la t ion  pro- 
vides such a measure f o r  subliming 
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abla tors .  A parameter consisting 
of a t o t a l  heat input divided by 
t h e  thermal-protection weight 
required t o  accommodate t h i s  heat 
input, which has been used i n  a 
number of investigations,  appears 
t o  provide t h e  bes t  avai lable  
character izat ion of charring 
ablators  : 

+ Qr 
E = -  QC 

W 

The weight i n  t h i s  equation i s  
t h a t  required t o  assure the  back 
surface of a shield subjected t o  
t h e  t o t a l  heat input Qc + Qr 

10 15 a w i l l  not exceed t h e  temperature 
%ff of pyrolysis.  Some r e s u l t s  of 

the  present study a r e  presented 
i n  terms of the  r a t i o  of t h i s  
parameter t o  Aheff i n  f igure  7. 

Figure 6.- Effect of enthalpy l eve l  on required 
weight of ab la t ing  material .  f = 0.4 ;  q = 0 .  

The effect iveness  increases with increasing stream enthalpy and i s  grea te r  
f o r  high t o t a l  heat input than f o r  lower heat input .  The values shown i n  f i g -  
ure  7 a r e  f o r  a value of 
enthalpies.  Therefore t h e  estimated system effectiveness i n  f igure  7 i s  l e s s  

f of 0.4 which i s  l e s s  than t h e  optimum value a t  high 

than the  maximum t h e o r e t i c a l  value. 
charring ab la tors  i s  8 t o  14 times 
g r e a t e r  than t h e  e f fec t ive  heat of 
pyrolysis f o r  t h e  range of impor- 
t a n t  heat loads. 

Accumulation of Char 

The extremum char weight i s  a 
s igni f icant  parameter i n  t h e  per- 
formance of charring ablators;  
however, it i s  a l imi t ing  value 

w i l l  be a t ta ined  o r  even approached 
during a given heating cycle. For 

J example, with a low v o l a t i l e  f rac-  
t i o n  and a high enthalpy level ,  
extremum char w e i g h t s  i n  excess of 
20 pounds per  square foot  (assuming 
p = 0.10) are predicted froin f i g -  
ure  2. T h i s  value i s  g r e a t e r  than 
the  estimated t o t a l  thermal 

L. and not necessar i ly  a value tha t  

A t  higher enthalpies t h e  effectiveness of 

I 1 I 

Figure 7.- Effect of enthalpy l e v e l  on e f fec t ive-  
ness of abla t ing  material .  f = 0.4; qr = 0. 



protec t ion  weight requirements f o r  t h e  s tagnat ion point  of a vehicle  entering 
t h e  ear th  * s  atmosphere a t  hyperbolic veloci ty .  
i s  necessary t o  examine ac tua l  char weights i n  r e l a t i o n  t o  e x t r e m u m  char weight 

as a funct ion of t he  t o t a l  
heat  input .  The char weight 
as a f r a c t i o n  of t h e  extremum 

f igu re  8 as a function of 
t o t a l  heat input, with zero 
i n i t i a l  char weight. 1 

(See r e f .  4. ) Therefore, it 

char weight i s  p lo t t ed  i n  d 

E lb 
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Figure 8.- Effec t  of heat input on the  r e l a t i v e  magni- 
tudes of char weight and extremum char weight. 

A t  the  lower enthalpy 
l e v e l  ( f i g .  8(a)) ,  W, 
approaches We, max a t  re la -  
t i v e l y  l o w  t o t a l  heat inputs,  
pa r t i cu la r ly  when the  vola- 
t i l e  f r ac t ion  i s  high. A t  
t h e  higher enthalpy l e v e l  
( f i g .  8 ( b ) ) ,  t h e  char thick- 
ness i s  considerably l e s s  
than i t s  maximum value, even 
with high t o t a l  heat inputs  
and a high v o l a t i l e  f r ac t ion .  
Therefore, a t  low enthalpy 
l e v e l s  t h e  performance of a 
charring ab la tor  i s  s t rongly 
influenced by t h e  char thick-  
ness approaching i t s  m a x i m  
value, whereas a t  high 
enthalpy levels ,  the  approach 
of t h e  char weight t o  a max- 
i m u m  value i s  barely evident. 
m e n  radiant  heat ing i s  pres- 
en t ,  t h e  char weight as a 
f r ac t ion  of i t s  maximum value 
i s  g r e a t l y  reduced f o r  given 
t o t a l  heat input .  

That W ~ / W , , ~ ~  i s  a 
dominant f a c t o r  i n  t h e  per- 
formance of charring ab la tors  
i s  evident from the  bas ic  6 

equation (eq.  (20) ) .  The 
t o t a l  heat input required t o  

W c , i  = 0), t h a t  is, within 
l / e  of t h e  maximum char 
weight i s  p lo t t ed  i n  f i g -  
ure  9 as a function of f .  
An increase i n  t h e  enthalpy 

produce a char weight (with t 
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Figure 9.- Heat input required f o r  char weight 
t o  reach l / e  of extremum char weight. 

WC 1 
1 - F; qr = 0.  - =  

WC, m 

l e v e l  by a f a c t o r  of 5 r e s u l t s  i n  
an increase by a f a c t o r  of 20 i n  
t h e  heat input required t o  achieve 
t h e  given value of Wc/wc,m,- 

UMITATIONS AND EXTENSIONS 

OF ANALYSIS 

The method of analysis  pre- 
sented herein i s  based on a d i f -  
fusion control led oxidation of t h e  
char surface.  This mechanism has 
been ve r i f i ed  i n  a s e r i e s  of t e s t s  
of 5O-percent-phenolic-5O-percent- 
nylon specimens. These tests were 
conducted i n  an atmospheric- 
pressure arc-heated j e t  with a 
heating r a t e  of about 
180 Btu/ft*-sec. For t e s t s  of 
other  mater ia ls  o r  f o r  t e s t s  i n  a 
d i f f e ren t  environment, o ther  
mechanisms of char removal may be 
important. Even when oxidation 
i s  t h e  only mechanism involved i n  
char removal, t h e  process w i l l  be 
react ion-rate  control led ra ther  
than d i f fus ion  control led when 
t h e  heating ra tes ,  and conse- 

quently t h e  surface temperatures, are s u f f i c i e n t l y  low. I f  mechanical forces  
such as shear s t resses ,  d i f f e r e n t i a l  pressures,  o r  thermal s t r e s ses  a r e  a fac- 
t o r  i n  char removal, these  e f f e c t s  must be superposed on t h e  e f f e c t s  of 
oxidation. 

I n  t h e  present analysis  it has been assumed tha t  pyrolysis  occurs a t  the 
desired back surface temperature and therefore  no addi t ional  insu la t ion  o r  
cooling i s  required.  Since t h i s  condition i s  not usual ly  s a t i s f i e d  with ac tua l  
materials,  t h e  analysis  can be used only t o  ca lcu la te  t h e  amount of material 
t h a t  w i l l  be pyrolyzed. The e f f e c t  of t h e  heat  conducted f rom the  pyrolysis  
zone i n t o  t h e  uncharred mater ia l  on t h e  r a t e  of pyrolysis  can be accounted f o r  
by adjust ing t h e  heat  of pyrolysis  t o  include t h e  heat required t o  raise t h e  
mater ia l  from i t s  i n i t i a l  temperature t o  the  pyrolysis  temperature. 
temperature response of t h e  uncharred mater ia l  and of t h e  s t ruc ture  must be 
determined on t h e  basis of a separate analysis .  

The ac tua l  

I n  deriving t h e  bas i c  d i f f e r e n t i a l  equation, no assumptions have been made 

Qc, equation (19) 
regarding t h e  funct ional  dependence of t h e  enthalpy o r  of t h e  radiant  heating; 
therefore,  if these  parameters a r e  expressed as functions of 
i s  s t i l l  a v a l i d  r e l a t ion ,  and so lu t ions  can be obtained by numerical methods. 



!!I 

I n  par t icu lar ,  i f  t h e  enthalpy and radiant  heating a re  slowly varying func- 
t i o n s  of 
t i o n s  (20a) and (22); t h a t  is, t h e  f i n a l  value of i n  each ca lcu la t ion  
becomes t h e  i n i t i a l  value i n  t h e  succeeding calculat ion.  The appropriate cur- 
ren t  values of all t h e  environmental parameters must be used i n  each s t ep  of 
t h e  calculat ion.  

Qc, a so lu t ion  can be obtained by successive appl icat ions of equa- 
WC 

CONCLUDING REMARKS 

A diffusion-control led oxidation mechanism f o r  t h e  removal of char at  t h e  
surface of a char-forming material can be incorporated i n  an approximate anal- 
ys i s ,  and t h e  performance of such mater ia ls  i n  various thermal environments 
can be evaluated. 
extremum char weight. 
of t h e  r a t i o  of t h e  ac tua l  char weight t o  t h e  extremum char weight. 

For a given material and environment, t he re  e x i s t s  an 
The performance of a mater ia l  a t  any time i s  a funct ion 

When t h e  ac tua l  char weight approaches the  extremum char weight, t h e  r a t e  
of pyrolysis  approaches a l i m i t i n g  value which i s  independent of t h e  thermal 
conductivity and surface emissivi ty  of  t h e  char and of t h e  heat of pyrolysis .  
n e  extremum char weight increases  l i n e a r l y  with t h e  enthalpy level ;  therefore ,  
t h e  ac tua l  char weight approaches t h e  extremum value much more quickly i n  t e s t s  
conducted a t  low-enthalpy l e v e l s  than i n  a high-enthalpy reentry environment. 
This f a c t o r  must be considered i n  evaluating t h e  s ignif icance of r e s u l t s  
obtained i n  f a c i l i t i e s  which provide a low-enthalpy t e s t  stream. 

The e f f e c t s  of radiant  heat ing on t h e  performance of charring ab la tors  
appear i n  t h e  governing equations only i n  t h e  extremum char thickness re la -  
t i o n .  
t iveness  of such materials increases  with t h e  subs t i t u t ion  of a s m a l l  component 
of radiant  heating f o r  convective heating. 
much more pronounced a t  low enthalpies  than a t  high enthalpies .  

The analysis  ind ica tes  t h a t  with constant t o t a l  heat  input t he  effec- 

This increase i n  effect iveness  i s  

Langley Research Center, 
National Aeronautics and Space Administration, 

Langley Station, Hampton, Va. ,  December 3, 1963. 
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APPEDJDIX 

A N f i Y S I S  OF OXIDATION 

I 1  

1.b 
r /  s tudied ana ly t ica l ly .  (See refs. 5 t o  7 . )  It i s  found t h a t  a t  low surface 

b rates.  A t  higher surface temperatures, however, t h e  process i s  d i f fus ion  con- 

/, 
The oxidation of carbon surfaces i n  hot airstreams has been extensively 

temperatures t h e  r a t e  of oxidation of carbon i s  controlled by the  react ion I '  

I t ro l led ;  t h a t  is, t h e  ra te  of oxidation i s  l imited by t h e  quantity of oxygen 
diffusing t o  t h e  surface through t h e  boundary layer .  For porous carbon sur- 
faces, t h e  temperature a t  which the  process becomes d i f fus ion  control led i s  
lower than it i s  f o r  nonporous surfaces.  

The char l aye r  t h a t  i s  formed when charring ablators  are heated tends t o  
be porous, as evidenced by t h e  f a c t  t h a t  the  gaseous products of pyrolysis 
t r ansp i r e  through it. I n  addition, in jec t ion  of these pyrolysis products i n t o  
t h e  boundary l aye r  reduces t h e  quantity of oxygen diffusing t o  t h e  surface.  
i s  anticipated,  therefore ,  t h a t  t he  oxidation of t he  char surface w i l l  be d i f -  
fusion controlled, even at r e l a t ive ly  low temperatures. 

It 

The r a t e  a t  which oxygen d i f fuses  t o  t h e  surface i s  determined from the  
boundary-layer equation f o r  conservation of oxygen. This equation i s  ( r e f .  8 )  

The energy equation can be expressed i n  t h e  following form: 

Equations ( A l )  and ( A 2 )  a r e  based on a nonreacting mixture of two gases having 
t h e  same heat capacity.  If Npr = 1 or i f  au*/ay i s  s m a l l  compared with 
a H / h ,  which i s  va l id  a t  stagnation regions, equation ( A 2 )  may be expressed . .  
approximately as follows : 

( A 3  1 

The maximum rate of d i f fus ion  of oxygen t o  t he  surface i s  obtained when 
The boundary conditions on t h e  concentration of oxygen at t h e  w a l l  vanishes. 

equations ( A l )  and ( A 3 )  are 

c = o  

H = Hw 



C +Ce 

H + H e  

The oxygen concentration and t h e  enthalpy can be replaced by t h e  dimen- 
s ion less  var iables:  

r' 

(A6a) - c  c = -  
C e  

d 

- H - H w  
H =  

He - Hw 

I n  terms of these  new variables ,  equations ( A l ) ,  (A3) ,  (Ab), and ( A 5 )  a r e  

- -  
C = H = O  (Y = 0 )  ( A 7 4  

( A 7 4  C = H + 1  ( Y  = a) 
- -  

Because o f  t h e  formal s i m i l a r i t y  of equations ( A 7 a )  and ( A D )  and t h e i r  
boundary conditions (A7c) and (A7d), i f  t h e  so lu t ion  of equation ( A D )  i s  

_-_ 
H = (P(XtY,NPr) ( A 8 4  

t h e  so lu t ion  of equation ( A 7 a )  i s  

where cp i s  t h e  same funct ion i n  both cases. It i s  shown i n  reference 10  
t h a t  cp(x,y,Np,) can be expressed as 

Theref ore ,  

20 



The r a t e  at  whit-- oxygen 1 ises t o  t h e  wa 

The aerodynamic heating r a t e  i s  iB \b 

i s  

The r a t i o  of rate of diffusion of oxygen t o  t h e  surface t o  t h e  heat- t ransfer  
rate i s  

Ce 
He - Hw 

Ce 
He - Hw 

Ce 
He - Hw 

0.6 
NLe 
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